std::negative_binomial_distribution
From cppreference.com
Defined in header
<random>
|
||
template< class IntType = int >
class negative_binomial_distribution; |
(since C++11) | |
Produces random non-negative integer values i, distributed according to discrete probability function:
-
P(i|k,p) =⎛
⎜
⎝k + i − 1
i⎞
⎟
⎠ · pk
· (1 − p)i
The value represents the number of failures in a series of independent yes/no trials (each succeeds with probability p), before exactly k successes occur.
Contents |
[edit] Member types
Member type | Definition |
result_type
|
IntType |
param_type
|
the type of the parameter set, unspecified |
[edit] Member functions
constructs new distribution (public member function) |
|
resets the internal state of the distribution (public member function) |
|
Generation |
|
generates the next random number in the distribution (public member function) |
|
Characteristics |
|
returns the distribution parameters (public member function) |
|
gets or sets the distribution parameter object (public member function) |
|
returns the minimum potentially generated value (public member function) |
|
returns the maximum potentially generated value (public member function) |
[edit] Non-member functions
compares two distribution objects (function) |
|
performs stream input and output on pseudo-random number distribution (function) |
[edit] Example
Run this code
#include <iostream> #include <iomanip> #include <string> #include <map> #include <random> int main() { std::random_device rd; std::mt19937 gen(rd()); // Pat goes door-to-door selling cookies // At each house, there's a 75% chance that she sells one box // how many times will she be turned away before selling 5 boxes? std::negative_binomial_distribution<> d(5, 0.75); std::map<int, int> hist; for(int n=0; n<10000; ++n) { ++hist[d(gen)]; } for(auto p : hist) { std::cout << p.first << ' ' << std::string(p.second/100, '*') << '\n'; } }
Output:
0 *********************** 1 ***************************** 2 ********************** 3 ************* 4 ****** 5 *** 6 * 7 8 9 10 11
[edit] External links
Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource.